twinlab.train_campaign#
- twinlab.train_campaign(filepath_or_params, campaign_id, ping_time=5.0, processor='cpu', verbose=False, debug=False)[source]#
Train a campaign in the twinLab cloud.
- Parameters:
filepath_or_params (str) – dict. Union. Filepath to local json or parameters dictionary for training.
campaign_id (str) – Name for the final trained campaign.
verbose (bool, optional) – Optional. Determining level of information returned to the user.
dataset_id (str) – Dataset ID of the dataset as stored in the Cloud.
inputs (list) – A list of strings referring to the columns in the
outputs (list) – A list of strings referring to the columns in the
estimator (str, optional) – Optional. The type of estimator used in the pipeline. This can be either
estimator_kwargs (dict, optional) – Optional. Keywords passed to the underlying estimator.
decompose_input (bool, optional) – Optional. Specifies whether the input parameters
input_explained_variance (float, optional) – Optional. Specifies how much of the
decompose_output (bool, optional) – Optional. Specifies whether the output parameters
output_explained_variance (float, optional) – Optional. Specifies how much of the
train_test_ratio (float, optional) – Optional. Specifies the ratio of training samples in
model_selection (bool, optional) – Optional. Whether to run model selection.
model_selection_kwargs (dict, optional) – Optional. Keywords passed to the model
seed (int, optional) – Optional. Specifies the seed for the random number generator.
- Return type:
Examples
Train using a local .json parameters file:
import twinlab as tl tl.train_campaign("path/to/params.json", "my_campaign")
Train via a python dictionary:
import pandas as pd import twinlab as tl df = pd.DataFrame({'X': [1, 2, 3, 4], 'y': [1, 4, 9, 16]}) tl.upload_dataset(df, "my_dataset") params = { "dataset_id": "my_dataset", "inputs": ["X"], "outputs": ["y"], } tl.train_campaign(params, "my_campaign")
Deprecated since version 2.5.0: The twinLab Python client version v1 will be deprecated imminently. Please upgrade to the latest version of the twinLab Python client. Avaible at https://pypi.org/project/twinlab/.