twinlab.sample_campaign#
- twinlab.sample_campaign(filepath_or_df, campaign_id, num_samples, processor='cpu', verbose=False, debug=False, **kwargs)[source]#
Sample campaign
Draw samples from a pre-trained campaign that exists on the twinLab cloud.
- Parameters:
filepath_or_df (str) – Location of .csv dataset on local machine for evaluation
campaign_id (str) – Name of pre-trained campaign to use for predictions.
num_samples (int) – Number of samples to draw for each row of the evaluation data.
verbose (bool, optional) – Optional. Determining level of information returned to the user.
- Returns:
with the sampled values
- Return type:
Examples
Using a local file:
import pandas as pd import twinlab as tl df = pd.DataFrame({'X': [1, 2, 3, 4], 'y': [1, 4, 9, 16]}) tl.upload_dataset(df, "my_dataset") params = { "dataset_id": "my_dataset", "inputs": ["X"], "outputs": ["y"], } tl.train_campaign(params, "my_campaign") filepath = "path/to/data.csv" # Local n = 10 df_mean, df_std = tl.sample_campaign(filepath, "my_campaign", n) print(df_mean) print(df_std)
Using a pandas.DataFrame:
import pandas as pd import twinlab as tl df = pd.DataFrame({'X': [1, 2, 3, 4], 'y': [1, 4, 9, 16]}) tl.upload_dataset(df, "my_dataset") params = { "dataset_id": "my_dataset", "inputs": ["X"], "outputs": ["y"], } tl.train_campaign(params, "my_campaign") df = pd.DataFrame({'X': [1.5, 2.5, 3.5]}) n = 10 tl.sample_campaign(df, "my_campaign", n)
Deprecated since version 2.5.0: The twinLab Python client version v1 will be deprecated imminently. Please upgrade to the latest version of the twinLab Python client. Avaible at https://pypi.org/project/twinlab/.