Parameters#

The following classes of the twinlab Parameter function define parameters that can be use to further refine functionality for the respective twinLab function.

Parameter classes#

EstimatorParams([detrend, covar_module, ...])

Parameter configuration for the Gaussian Process emulator (estimator).

DesignParams([sampling_method, seed])

Parameter configuration to setup an initial experimental or simulations design structure.

ModelSelectionParams([seed, ...])

Parameter configuration for the Bayesian model selection process.

TrainParams([estimator, estimator_params, ...])

Parameter configuration for training an emulator.

ScoreParams([metric, combined_score])

Parameter configuration for scoring a trained emulator.

BenchmarkParams([type])

Parameter configuration for benchmarking a trained emulator.

PredictParams([observation_noise])

Parameter configuration for making predictions using a trained emulator.

SampleParams([seed, fidelity])

Parameter configuration for sampling from a trained emulator.

RecommendParams([acq_kwargs, opt_kwargs, seed])

Parameter configuration for recommending new points to sample using the Bayesian-optimisation routine.

AcqFuncParams([weights])

Parameter configuration for the acquisition function used in the Bayesian-optimisation routine.

OptimiserParams([num_restarts, raw_samples])

Parameter configuration for the optimiser used in the Bayesian-optimisation routine.

CalibrateParams([y_std_model, ...])

Parameter configuration for inverting a trained emulator to estimate the input parameters that generated a given output.