Source code for twinlab.dataset

# Standard imports
import io
from typing import List

import pandas as pd

# Third-party imports
from deprecated import deprecated
from typeguard import typechecked

# Project imports
from . import api, settings, utils

# Parameters
DEBUG = False  # For developer debugging purposes
USE_UPLOAD_URL = True  # Needs to be set to True to allow for large dataset uploads
DEPRECATION_VERSION = "2.5.0"
DEPRECATION_MESSAGE = (
    "This method is being deprecated. Please use `Dataset.analyse_variance()` to analyse either input or output variance.",
)


[docs] class Dataset: """A twinLab dataset that can be used for training an emulator online. Args: id (str): Name of the dataset. Example: .. code-block:: python dataset = tl.Dataset("my_dataset") """
[docs] def __init__(self, id: str): self.id = id
def __str__(self): return f"Dataset ID: {self.id}"
[docs] @typechecked def upload( self, df: pd.DataFrame, verbose: bool = False, ) -> None: """Upload a dataset to the twinLab cloud so that it can be queried and used for training. Please note the largest dataset that can be uploaded is currently 5GB. When using twinLab emulators, note that training time scales cubically with the amount of data included. It may be worthwhile training with a smaller subset of data at first, to determine approximately how long it will take to train. Please get in touch with our experts for technical support to understand how to make best use of data. Args: df (pandas.DataFrame): A `pandas.DataFrame` containing the dataset to be uploaded. verbose (bool, optional): Display information about the operation while running. Example: .. code-block:: python dataset = tl.Dataset("my_dataset") df = pd.DataFrame({"X": [1, 2, 3, 4], "y": [1, 4, 9, 16]}) dataset.upload(df) """ # Upload the file (either via link or directly) if USE_UPLOAD_URL: _, response = api.generate_upload_url(self.id, verbose=DEBUG) upload_url = utils.get_value_from_body("url", response) utils.upload_dataframe_to_presigned_url( df, upload_url, verbose=verbose, check=settings.CHECK_DATASETS, ) if verbose: print("Processing dataset") _, response = api.process_uploaded_dataset(self.id, verbose=DEBUG) else: csv_string = utils.get_csv_string(df) _, response = api.upload_dataset(self.id, csv_string, verbose=DEBUG) if verbose: message = utils.get_message(response) print(message)
[docs] @typechecked def analyse_variance( self, columns: List[str], verbose: bool = False, ) -> pd.DataFrame: """Return an analysis of the variance retained per dimension. Args: columns (list[str]): List of columns to evaluate. This would usually be either the set of input or output columns. verbose (bool, optional): Display information about the operation while running. Returns: pandas.Dataframe containing the variance analysis. Example: .. code-block:: python dataset = tl.Dataset("quickstart") dataset.analyse_variance(columns=["x", "y"]) # Usually the columns would be either input or output .. code-block:: console Number of Dimensions Cumulative Variance 0 0 0.000000 1 1 0.925741 2 2 1.000000 """ columns_string = ",".join(columns) _, response = api.analyse_dataset( self.id, columns=columns_string, verbose=DEBUG ) csv_string = utils.get_value_from_body("dataframe", response) csv_string = io.StringIO(csv_string) df = pd.read_csv(csv_string, index_col=0, sep=",") if verbose: print("Variance Analysis:") print(df) return df
[docs] @deprecated( version=DEPRECATION_VERSION, reason=DEPRECATION_MESSAGE, ) @typechecked def analyse_input_variance( self, columns: List[str], verbose: bool = False, ) -> pd.DataFrame: """ .. deprecated:: 2.5.0 This method is being deprecated. Please use the method ``Dataset.analyse_variance()`` to analyse input or output variance. """ df = self.analyse_variance(columns=columns, verbose=verbose) return df
[docs] @deprecated( version=DEPRECATION_VERSION, reason=DEPRECATION_MESSAGE, ) @typechecked def analyse_output_variance( self, columns: List[str], verbose: bool = False, ) -> pd.DataFrame: """ .. deprecated:: 2.5.0 This method is being deprecated. Please use the method ``Dataset.analyse_variance()`` to analyse input or output variance. """ df = self.analyse_variance(columns=columns, verbose=verbose) return df
# TODO: This should possibly be called 'download' instead of 'view'
[docs] @typechecked def view(self, verbose: bool = False) -> pd.DataFrame: """View (and download) a dataset that exists on the twinLab cloud. Args: verbose (bool, optional): Display information about the operation while running. Returns: pandas.Dataframe containing the requested dataset. Example: .. code-block:: python dataset = tl.Dataset("quickstart") dataset.view() .. code-block:: console x y 0 0.696469 -0.817374 1 0.286139 0.887656 2 0.226851 0.921553 3 0.551315 -0.326334 4 0.719469 -0.832518 5 0.423106 0.400669 6 0.980764 -0.164966 7 0.684830 -0.960764 8 0.480932 0.340115 9 0.392118 0.845795 """ _, response = api.view_dataset(self.id, verbose=DEBUG) csv_string = utils.get_value_from_body("dataset", response) csv_string = io.StringIO(csv_string) df = pd.read_csv(csv_string, sep=",") if verbose: print("Dataset:") print(df) return df
[docs] @typechecked def summarise(self, verbose: bool = False) -> pd.DataFrame: """Show summary statistics for a dataset that exists on the twinLab cloud. Args: verbose (bool, optional): Display information about the operation while running. Returns: pandas.DataFrame: DataFrame with summary statistics. Example: .. code-block:: python dataset = tl.Dataset("my_dataset") dataset.summarise() .. code-block:: console x y count 10.000000 10.000000 mean 0.544199 0.029383 std 0.229352 0.748191 min 0.226851 -0.960764 25% 0.399865 -0.694614 50% 0.516123 0.087574 75% 0.693559 0.734513 max 0.980764 0.921553 """ _, response = api.summarise_dataset(self.id, verbose=DEBUG) csv_string = utils.get_value_from_body("dataset_summary", response) csv_string = io.StringIO(csv_string) df = pd.read_csv(csv_string, index_col=0, sep=",") if verbose: print("Dataset summary:") print(df) return df
[docs] @typechecked def delete(self, verbose: bool = False) -> None: """Delete a dataset that was previously uploaded to the twinLab cloud. It can be useful to delete an emulator to keep a user's cloud account tidy, or if dataset has been set up incorrectly and no longer needs to be used. Args: verbose (bool, optional): Display information about the operation while running. Example: .. code-block:: python dataset = tl.Dataset("quickstart") dataset.delete() """ _, response = api.delete_dataset(self.id, verbose=DEBUG) if verbose: message = utils.get_message(response) print(message)